Category Archives: OS X

NSDebugScrolling

I’m working on some heavy NSTextView, NSScrollView, NSClipView type stuff in MarsEdit. This stuff is fraught with peril because of the intricate contract between the three classes to get everything in a text view, including its margins, scrolling offset, scroll bars, etc., all working and looking just right.

When faced with a problem I can’t solve by reading the documentation or Googling, I often find myself digging in at times, scratching my head, to Apple’s internal AppKit methods, to try to determine what I’m doing wrong. Or, just to learn with some certainty whether a specific method really does what I think the documentation says it does. Yeah, I’m weird like this.

I was cruising through -[NSClipView scrollToPoint:] today and I came across an enticing little test (actually in the internal _immediateScrollToPoint: support method):

0x7fff82d1e246 <+246>:  callq  0x7fff82d20562            ; _NSDebugScrolling

0x7fff82d1e24b <+251>:  testb  %al, %al

0x7fff82d1e24d <+253>:  je     0x7fff82d20130            ; <+8160>

0x7fff82d1e253 <+259>:  movq   -0x468(%rbp), %rdi

0x7fff82d1e25a <+266>:  callq  0x7fff8361635e            ; symbol stub for: NSStringFromSelector

0x7fff82d1e25f <+271>:  movq   %rax, %rcx

0x7fff82d1e262 <+274>:  xorl   %ebx, %ebx

0x7fff82d1e264 <+276>:  leaq   -0x118d54fb(%rip), %rdi   ; @“Exiting %@ scrollHoriz == scrollVert == 0”

0x7fff82d1e26b <+283>:  xorl   %eax, %eax

0x7fff82d1e26d <+285>:  movq   %rcx, %rsi

0x7fff82d1e270 <+288>:  callq  0x7fff83616274            ; symbol stub for: NSLog

 

Hey, _NSDebugScrolling? That sounds like something I could use right about now. It looks like AppKit is prepared to spit out some number of logging messages to benefit debugging this stuff, under some circumstances. So how do I get in on the party? Let’s step into _NSDebugScrolling:

AppKit`_NSDebugScrolling:

0x7fff82d20562 <+0>:   pushq  %rbp

0x7fff82d20563 <+1>:   movq   %rsp, %rbp

0x7fff82d20566 <+4>:   pushq  %r14

0x7fff82d20568 <+6>:   pushq  %rbx

0x7fff82d20569 <+7>:   movq   -0x11677e80(%rip), %rax   ; _NSDebugScrolling.cachedValue

0x7fff82d20570 <+14>:  cmpq   $-0x2, %rax

0x7fff82d20574 <+18>:  jne    0x7fff82d20615            ; <+179>

0x7fff82d2057a <+24>:  movq   -0x116a7ad9(%rip), %rdi   ; (void *)0x00007fff751a9b78: NSUserDefaults

0x7fff82d20581 <+31>:  movq   -0x116d5df8(%rip), %rsi   ; “standardUserDefaults”

0x7fff82d20588 <+38>:  movq   -0x1192263f(%rip), %rbx   ; (void *)0x00007fff882ed4c0: objc_msgSend

0x7fff82d2058f <+45>:  callq  *%rbx

0x7fff82d20591 <+47>:  movq   -0x116d5fa0(%rip), %rsi   ; “objectForKey:”

0x7fff82d20598 <+54>:  leaq   -0x118ab0cf(%rip), %rdx   ; @“NSDebugScrolling”

0x7fff82d2059f <+61>:  movq   %rax, %rdi

0x7fff82d205a2 <+64>:  callq  *%rbx

 

Aha! So all i have to do is set NSDebugScrolling to YES in my app’s preferences, and re-launch to get the benefit of this surely amazing mechanism. Open the Scheme Editor for the active scheme, and add the user defaults key to the arguments passed on launch:

Screenshot 3 29 16 3 50 PM

You can see a few other options in there that I sometimes run with. But unlike those, NSDebugScrolling appears to be undocumented. Googling for it yields only one result, where it’s mentioned offhand in a Macworld user forum as something “you could try.”

I re-launched my app, excited to see the plethora of debugging information that would stream across my console, undoubtedly providing the clues to solve whatever vexing little problem led me to stepping through AppKit assembly code in the first place. The results after running and scrolling the content in my app?

Exiting _immediateScrollToPoint: without attempting scroll copy ([self _isPixelAlignedInWindow]=1)

I was a little underwhelmed. To be fair, that might be interesting, if I had any idea what it meant. Given that I’m on a Retina-based Mac, it might indicate that a scrollToPoint: was attempted that would have amounted to a no-op because it was only scrolling, say, one pixel, on a display where scrolling must move by two pixels or more in order to be visible. I’m hoping it’s nothing to worry about.

But what else can I epect to be notified about by this flag? Judging from the assembly language at the top of this post, the way Apple imposes these messages in their code seems to be based on a compile-time macro that expands to always call that internal _NSDebugScrolling method, and then NSLog if it returns true. Based on the assumption that they use the same or similar macro everywhere these debugging logs are injected, I can resort to binary analysis from the Terminal:

cd /System/Library/Frameworks/AppKit.framework
otool -tvV AppKit | grep -C 20 _NSDebugScrolling

This dumps the disssembly of the AppKit framework binary, greps for _NSDebugScrolling, and asks that 20 lines of context before and after every match be provided. This gives me a pretty concise little summary of all the calls to _NSDebugScrolling in AppKit. It’s pretty darned concise. In all there are only 7 calls to _NSDebugScrolling, and given the context, you can see the types of NSLog strings would be printed in each case. None of it seems particularly suitable to the type of debugging I’m doing at the moment. It’s more like plumbing feedback from within the framework that would probably mainly be interesting from an internal implementor’s point of view. Which probably explain why this debugging key is not publicized, and is only available to folks who go sticking their nose in assembly code where it doesn’t belong.

Constraint Activation

I got started with Auto Layout a few years ago, and on the whole I’m very happy with the framework. It can be exceedingly frustrating at times, especially when some nuanced constraint priority or other is imposing a layout that just doesn’t make sense. But I measure its value by the degree to which I shudder in imagining going back to the old springs and struts approach.

Although some interfaces work perfectly with a fixed set of constraints, other interfaces require dynamic manipulation at runtime in order to achieve the desired result. For example, if a change in a preferences panel brings in some new element to the UI, it might make sense to adjust constraints at runtime to accommodate it.

Prior to OS X 10.10 and iOS 8.0, this could be achieved in a general case by removing and adding constraints as needed to the view in question:

  1. Remove constraints and save them somewhere, e.g. in an array, for later.
  2. Add or remove elements to the view.
  3. Add constraints, e.g. by fetching them from a saved array.

It is important to remove constraints and save them before removing an affected element, because removing the element will cause the constraint to be implicitly removed before you can save it.

Starting in OS X 10.10 and iOS 8.0, I was intrigued by the announcement that NSLayoutConstraint now supports a property called “active,” which can be used to, you guessed it, activate or deactivate a constraint. I assumed this would be an answer to my prayers: a constraint could now be left installed on a view for safe-keeping, but its impact on layout would be negated by setting it to be “inactive.” I envisioned setting up competing groups of constraints on a view and simply activating or deactiving them en masse when the need arose.

I assumed wrong.

Looking at the documentation more closely, I see the description of what the method actually does:

Activating or deactivating the constraint calls addConstraint: and removeConstraint: on the view that is the closest common ancestor of the items managed by this constraint. Use this property instead of calling addConstraint: or removeConstraint: directly.

The rub is that an NSLayoutConstraint whose “active” is set to false will be removed from view it is installed on. So if you have any hopes or dreams of reapplying that constraint later, you’ll need to save it somewhere, just as before. If you don’t keep a strong reference to the constraint, it may be deallocated. If you tried to go back and set “active” a constraint that you referenced as a weak IBOutlet, for example, it would be nil by the time you tried to do so.

The OS X 10.10 AppKit Release Notes makes a clearer emphasis on the intended utility of the “active” property:

Under Mac OS X 10.10, it is now possible to directly activate and deactivate NSLayoutConstraint objects, without having to worry about adding them to an appropriate ancestor view. This is accomplished by manipulating NSLayoutConstraint’s new boolean property ‘active’. Class methods are available for operating on multiple constraints simultaneously, which can be much faster. The legacy API on NSView for adding & removing constraints is now deprecated.

So “active” is not a convenience for easily toggling whether an installed layout constraint has an effect or not, but a convenience for the plumbing of installing and removing them. The emphasis on adding and removal API being deprecated especially underscores that.

Having written this all out, it suddenly occurs to me that the “active” flag I was dreaming of is actually sort of available, and has been all along. Because NSLayoutConstraint supports a mutable “priority” property, you can effectively disable it by setting its priority lower than any other constraints that affect the same view. One caveat though is you can’t change a constraint’s priority to or from “required” at runtime, so you have to choose a priority lower than 1000. Something like this should work:

NSLayoutPriority newPriority = activate ? 999 : 1;
[dynamicConstraint setPriority:newPriority];

So long as a set of counterpart constraints affecting similar views is always prioritize to the inverse when toggling state, something like this should workâ„¢. Of course, it requires knowing the “active” priority in code. If a given disabled constraint should actually have priority 501 or 250, or whatever, then you’d have to save that priority somewhere. In which case you may as well go back to saving the whole constraint.

Mac App Store Sandbox Testing

For months, many of us Mac developers have noticed that apps built for Mac App Store submission could no longer be tested using iTunes Connect “sandbox” users. Previously, a sandbox user account could be used to authenticate and download a _MASReceipt for a Mac app, to ensure that in-app receipt validation is working as expected. After updating to 10.11.2, many of us noticed that this functionality suddenly stopped working:

At first, we assumed it was a bug. But as time went on, it started to seem as though it could be related to Apple’s announcement that one of its key certificates was expiring.

Still, the communication from Apple about this issue was poor enough that it wasn’t obvious what exactly we needed to do. Even though the page linked above has a section explicitly listing what Mac developers are expected to do:

You can verify your receipt validation code is compatible with the renewed certificate in the test and production environments. A pre-release version of the Mac App Store Update for OS X Snow Leopard beta is now available.

The linked “pre-release version” was no-doubt once a valid link, but at least through my account, it now leads to a permission-denied type failure page.

So what do we do? Fortunately, after chatting through the problem with some friends, Chris Liscio deduced the key, somewhat-obvious in retrospect steps to test your Mac app for compliance with the new certificate, while getting sandbox testing working again at the same time:

  1. Install the new certificate from Apple. In my case, I opened it in Keychain access and added it to the System keychain, where the older, expiring certificate currently resides.
  2. Reboot.

The second step is the important one. If you just install the certificate and expect everything to work, you’ll be sadly rebuffed with continued failures. Reboot. Let the system soak in the new certificate, then try re-launching your Mac app built for submission to the Mac App Store. It will prompt you, as you had previously expected it to, for your sandbox credentials. When you enter them, instead of insisting you set up a new iTunes customer profile, it will just launch. Or, if it doesn’t, maybe you’ve got some problems to work though in your receipt validation code.

Unsteady Platform

I ran into a vexing build failure with one of my iOS integration builds. The vast majority of everything in my complex project, consisting of dozens of dependencies, has built fine, but at link time things blow up because one of the dependencies is not of the expected architecture.

Undefined symbols for architecture armv7:
"_RSIsEmpty", referenced from:
-[RSFormattingMacro emptyMarkupPlaceholders] in RSFormattingMacro.o
ld: symbol(s) not found for architecture armv7

Ugh, huh, wha? How is this happening? It turns out the library in which “RSIsEmpty” resides, RSFoundation, is being linked to, but it’s opting for an OS X version of the library instead of an iOS one. Because this is an integration build that performs a number of related builds for both Mac and iOS, it makes some sense that I would have both an iOS and OS X build result in the build folder. But even if I have built copies for either architecture, why is it opting for the OS X version on an iOS build?

I decided to blow away all the built versions of RSFoundation and try the build again. This time, I got an even more perplexing failure:

clang: error: no such file or directory: '[...]/build-Integration/Release/RSFoundation.framework/RSFoundation'

I’m scratching my head. Did it somehow get removed as a dependency? But then I notice something subtle. It’s looking for the framework in the “Release” build folder, but for my iOS build it should be looking in “Release-iphoneos”. What the heck is going on?

In spite of the sole build target in this scheme being an iOS app, Xcode (actually xcodebuild) is opting to build this scheme with a default destination of OS X. I don’t know of a direct way to get xcodebuild to list the available destinations for a scheme, but I know that if you pass a bogus destination platform, it will do the honor of listing its impressions:

xcodebuild -destination "platform=xx" -scheme MyIPhoneApp

The requested device could not be found because no platform could be found for the requested platform name.

Available destinations for the "MyIPhoneApp" scheme:
		{ platform:OS X, arch:x86_64 }
		{ platform:iOS Simulator, id:6DF04FFC-1C8A-4745-8F8C-7369E9CBF8DB, OS:9.3, name:iPad 2 }
		[... every other iOS simulator on my Mac ...]

Aha! So it thinks my iPhone app is suitable for OS X. But why? After a great deal of experimentation and poking around, I discovered the root of the problem is summarized by this true statement:

If any target in a Scheme’s dependency tree targets OS X, then the scheme itself will also be considered to target OS X.

In retrospect, this explains the problem perfectly. I had recently added a subproject to my dependency tree that builds both an iOS and a Mac version of a library. That’s fine: it works pretty well these days to allow targets for differing platforms to coexist in the same project file. But each of these targets also shares a dependency on a single, legitimate OS X target: a helper tool used in the process of generating that project’s own source files.

This must be at least a relatively common scenario for iOS builds of certain complexity. Because the platform on which all iOS builds run is OS X, any helper tools that are compiled and used in the process of generating sources or otherwise processing build materials, must be built for OS X.

The workaround to my specific problem is to specify a platform explicitly on the command line. I can’t assume that because the scheme targets iOS, it will necessarily default to an iOS platform target. I consider this a bug, not only because it led to this difficult to diagnose build error, but because it has other ramifications such as the presentation in Xcode’s scheme popup for these projects a useless, distracting “My Mac” target which should never be selected for the schemes in question.

I filed this as Radar #24247701: A scheme whose target has dependencies on another platform shouldn’t “support” that platform.

A Eulogy For Objective-C

I missed Aaron Hillegass’s talk at AltConf earlier this year, but was nudged to take a look at the transcript by Caro’s tweet today linking to the talk’s video page on Realm.

Although I’m 100% sure, based on experience, that Aaron’s talk is a pure delight to watch, I also appreciate that I could jump right in and read a transcript of the talk until I get a chance to watch it. Aaron gives a thought-provoking “eulogy” for Objective-C, in which he celebrates its parentage and its life thus far.

When a guy like Aaron Hillegass gives a history of Objective-C, and speaks to its strengths and weaknesses, you should hang on every word. He covers many of the features that distinguish the language, provides a context for when they were added, and gives examples of key technologies that are enabled by them. He is also aware of the tradeoffs some of these features demand:

Loose typing made a lot of things that were difficult in other languages much easier, or possible. It also made bugs that didn’t exist in other languages possible as well. And you embrace that as an Objective-C programmer. You’re like, “This is a language for smart, pedantic, uptight people, I’m going to be very careful and do the right thing when I’m typing in names.“

I love his hypothetical quote, and think it condenses the feeling a lot of us long-time Objective-C programmers have about the language. We welcome Swift in many respects, but it’s hard to let go of a language whose idiosyncrasies we’ve grown to love, hate, and ultimately make peace with.

WebKit Hacking From The Bleeding Edge

As the developer of an app that depends heavily upon Apple’s WebKit technologies, I have often been grateful that the software is open source. It is by no means easy to wrap one’s head around, but when faced with a vexing problem, I can browse, even build and run a custom copy of WebKit on my system, to step through code and try to reason more clearly about its behavior. I’ve even filed my share of bug reports and patches.

While I am very interested in the evolution of WebKit, I am even more concerned with the evolution of OS X. For this reason, I typically install OS X beta releases far earlier than many of my colleagues. This gives me the opportunity to work day to day with the latest changes coming from Apple, and makes it that much more likely I will spot issues with my apps, concerns with the OS, etc., before my customers do.

As an open source project, I initially believed I could build and run WebKit wherever I choose. After all, isn’t that what “open source” is supposed to be all about? But ah, there’s a catch. At least when it comes to building and running WebKit on OS X releases, there is a dependency on a small, binary-only static library which provides key system-specific linkages to WebKit. Usually this binary is added to the open source project around the time the system release goes public, but not much sooner.

The long and short of it? If you want to build WebKit and you don’t work at Apple, you need to do so from publicly released versions of OS X.

For years, I have found this personally annoying, but also philosophically distasteful. It seems like a problem for Apple, too: it’s in their best interest to have as many WebKit developers as possible staying up to date, building the latest versions, testing, submitting patches, etc. And it’s in their interest to have as many OS X developers running the latest betas of the OS, providing feedback, preparing their apps for the public, etc.

A single developer, with a single Mac, running a single installation of OS X cannot simultaneously be a diligent, interested WebKit developer and a dedicated OS X beta tester. This seems like a problem to me, so I finally reported a bug. Radar 21703162: “Beta OS X releases should facilicate building/running WebKit from source.”