Isolating Xcode Builds

I maintain an extensive array of automated builds with Jenkins. The automatic reporting of inadvertent build failures empowers me to stay much more on top of the quality of my own code, which is shared across many projects and targets many platforms and OS releases.

Unfortunately, I have frequently run into trouble with “false negative” builds. Builds which fail for perplexing reasons that I can usually only chalk up to “welp, something changed in Xcode.”

Sometimes the problem has seemed to be rooted in its finicky behavior with respect to paths that have spaces in them. Fine, I’ve removed all the spaces from my paths.

Other times, the problems have been much more nuanced, having to do with the problematic (I guess) sharing of cached data between builds. I don’t know how much of this should be chalked up to the fact that I’m building multiple projects at once, or that I’m building multiple problems of the same name, but with different dependencies and platform target. In any case, I have come to realize that the key to making sure my builds, you know, build when they should is to isolate each build as much as possible from the others.

To this end, over the years I have taken advantage of Xcode build settings such as SYMROOT, the setting that defines where your “Built Products” should be stored. But that only affects where the final products are saved. To make sure intermediate files that are used to build a product don’t get mixed and matched, I also override OBJROOT.

Overriding those two gets you a long way towards isolating a build from other builds that may have happened recently, or that may be happening right now. But, as it turns out, they don’t get you far enough.

Apple has increasingly moved towards some valuable changes in their approach to handling “cache” type data, including precompiled headers, header maps, module caches, etc. To the extent that Apple can use these caching strategies to enable faster builds, I’m all for it. But on my build server, it’s inevitably led to confusion and disarray.

Recently I’ve run up against confounding build errors that I can’t quite trace to specific problems. All I know is that “wiping out the Derived Data folder” solves it. Adding yet more build setting overrides to my build process also seems to solve some of the issues. For example, faced with a litany of precompiled header errors along the lines of:

fatal error: file 'BlahBlah.h' has been modified since the precompiled header 'WhooHah_Prefix-fmvtpvxgevrsamfytqmaabjnyjyx/WhooHah_Prefix.pch.pch' was built

I have found some relief by adding another override, this time for the SHARED_PRECOMPS_DIR. Recently, I ran up against a similar kind of failure, presumably related to the fact that I have started taking advantage of Apple’s support for “modules”:

fatal error: malformed or corrupted AST file: 'Unable to load module "[...]/DerivedData/ModuleCache/LQKN4K4Q4BR6/Foundation-1SPG61SLRK6SC.pcm": module file out of date'

That’s fine, but where is the “modules” equivalent of SHARED_PRECOMPS_DIR? It probably exists, though it’s not documented on the aforelinked build settings reference. Worse, since the advent of the DerivedData folder, it seems some of the claims in the build settings reference about default values are no longer true.

“Fine,” I thought, “how the heck do I override the Derived Data folder location altogether?” I don’t know why it took me so long to pursue this line of thinking. Perhaps my allegiance to the idea of saving effort through shared caching was too strong for my own good. When it comes down to it: I don’t mind that builds take a little longer or use more disk space, so long as they are an utmost reliable reflection of the current status of my source bases.

But how do you override the Derived Data folder location? If there is a build setting for it, then like the module caches folder, is evidently too new to be well-documented. Examining the build process in Xcode, it seems to be defined at a higher level than any of the other environment-variable based settings that can be observed in the build log e.g. for custom build phases.

I know you can set the Derived Data folder location in Xcode’s UI, but that, I assumed, only affects the builds that happen within the app. The brilliant idea finally dawned on me to check the xcodebuild man page, and what do you know?

-derivedDataPath path

Overrides the folder that should be used for derived data when performing a build action on a scheme in a workspace.

Since the vast majority, if not all, of the various cache and cache-like folders I’m trying to override are in fact located by default within the “Derived Data” folder, overriding just it could be the lynchpin that ensures my builds are isolated from one another.

I adjusted my build scripts to no longer override OBJROOT, CACHE_ROOT, or SHARE_PRECOMPS_DIR. Instead, they simply pass -derivedDataPath to xcodebuild with a suitably unique path:

xcodebuild -project MyProj.xcodeproj -scheme "MyScheme" -derivedDataPath "./MyCache"

You know what? Suddenly all my Jenkins builds are passing all their tests. Son of a gun.

Brent’s Feedback

I love Brent Simmons’s style of responding to my last post, in which I described a cover class for NSURLSession that makes is easier for me to adopt it gradually throughout my source base. Brent:

This is the right way to do it. The callers – including the unit tests – don’t have to know anything about the implementation, since the interface is the same. That’s just good programming.

That’s just good etiquette. When responding to somebody with whom you have a fundamental difference of opinion, lead with a compliment. Brent goes on to say:

It’s also not how I would do it in this specific case.

Brent argues that cover classes have their place when it comes to adapting APIs that are not native to the frameworks or language being developed in. But when there is no impedance mismatch, he says:

I’d rather just use a thing directly, rather than write a class that wraps a built-in class.

All good food for thought. I will add here that in the particular case of my “RSLegacyHTTPRequest” class, I decided to make it a subclass of the working title for my previously mentioned “RSSpiffyRequest,” which is the much less glamorous “RSHTTPSession.” RSHTTPSession is a subclass of NSObject, and happens to own a subsystem of objects that “don’t matter to you” but deeply involve NSURLSession. In fact, interacting with RSHTTPSession will feel a lot like interacting with NSURLSession.

The idea, longer term, is that clients of RSLegacyHTTPRequest will move away from that antiquated interface and towards RSHTTPSession. The argument for subclassing in this case is I like the pattern when it allows me to gradually move good logic upwards, from an antique class to a modern class. Is it awkward that it’s called RSHTTPSession, instead of RSHTTPSessionManager? Maybe. I’ll change it if things get weird.

So I’m doing things my way, adapting an antique class to the future by providing a cover class that translates an old-and-busted interface to NSURLSession, and doing things Brent’s way, by basing the future of my “spiffy” NSURLSession convenience classes on a base class that inherits from NSObject, provides a stable interface, but fully embraces and exposes the NSURLSession philosophy to its clients.

Same Tests, Different Class

I recently decided to tackle a long-postponed refactoring of my source base: to move from my own, custom CFNetwork-based “URL request” class, to something based on the modern NSURLConnection or NSURLSession classes from Apple.

When I first started writing networking code for OS X, NSURLConnection didn’t exist yet. If you wanted a class that approximated the convenience of NSURLConnection as we know it today, you had to write your own wrappers around the lower-level CFNetwork HTTP library functions. If you needed to have precise control over the loading of network resources from the web, you simply had to use CFNetwork (or the 3rd-party open-source libcurl library, which some folks did do!.)

When I acquired MarsEdit from NewsGator in early 2007, I wasn’t surprised to learn that Brent Simmons (the original author) had also implemented his own CFNetwork-based HTTP class: RSHTTPDownloader. I took a look at it and my own class, RSHTTPRequest, and ended up migrating the best parts of his with the best parts of mine, keeping the name I had grown accustomed to: RSHTTPRequest. (It was a great convenience that Brent’s Ranchero Software and and my Red Sweater adopted the same class-name prefix).

Fun fact: I actually worked briefly on the CFNetwork team at Apple, and learned the ropes of that somewhat-daunting, low-level API. Suffice to say, I was less scared off by CFNetwork than some people, but even I didn’t consider it to be perfectly simple to use. However, it worked well enough and when NSURLConnection debuted later in 2007, I found it somewhat wanting. I can’t remember the details but there were little things that I’d come to appreciate about having direct access to the “streams” and I lost that by moving to NSURLConnection. So I stuck with RSHTTPRequest.

Fast-forward more than seven years and I’m still on RSHTTPRequest. But now, it’s clearly to my detriment. Not only has Apple been improving NSURLConnection and the rest of the networking stack all this time, a couple years ago they introduced the all new NSURLSession, which makes the whole setup easier to use and more powerful at the same time. Capping off the incentives is the fact that new functionality such as background network loading sessions are essentially required if you want to make good use of recent technologies such as Share Extensions. In short, it’s a great time to switch to NSURLSession.

Just Switch to NSURLSession!

The only problem is I’ve spent more than seven years building a pretty complex network-oriented app around this one, I hesitate to say little anymore, this one disgusting evolution of what started out as a simple wrapper around CFNetwork’s HTTP loading mechanism. RSHTTPRequest has every manner of convenience method, special cases, not to mention subclasses covering highly specialized networking operations such as POST’ing HTTP forms, communicating with most blogging APIs on the planet, etc. You get the idea: I can’t just switch to NSURLSession. So what am I going to do?

I’m a very paranoid person when it comes to code, and it soothes me to take small, predictable, measurably safe steps when it comes to situations like this. I already have a number of unit tests on RSHTTPRequest that verify its behavior to a reasonable extent. The basics are covered, and as I’ve discovered and addressed bugs over the years, I’ve usually taken the time to add unit tests covering the nuances. So to be perfectly clear, the main impediments to my switching to NSURLSession are:

  1. The interface to NSURLSession is totally different from my custom class.
  2. The default behavior of NSURLSession is totally different from my custom class.

So I could hunker down for a long weekend, write a new NSURLSession-based helper, RSSpiffyRequest, and then change every single line of code that deals with RSHTTPRequest to instead use the pertinent methods on the new class. One problem with this approach is that I have to come up with the all new RSSpiffyRequest interface from scratch, before I change a single line of code. The other problem is even if I come up with the perfect interface for my new class, I’ll inherit all the unpredictably different behaviors of NSURLSession. Things will randomly not work. Crashes will probably happen. It will suck.

The only way forward, to my paranoid mind, is to find a way to slow down the transition so that fewer parts are changing at once. Since RSHTTPRequest already satisfies a contract with countless clients, and because it’s already covered by a moderate number of unit tests, the safest way forward is to change RSHTTPRequest so that it’s based on NSURLSession.

But hold on, that’s too fast for me, too. I don’t want to reimplement RSHTTPRequest’s whole interface at once, hold my breath, and hope that all the code still works. Instead, I need a new class that implements the interface of RSHTTPRequest, can be tested like RSHTTPRequest, and can be moved to by client code gradually, as the expected behavior is confirmed.

Parallel Request Classes

The approach I decided to take is to add a new class, RSLegacyHTTPRequest. The name is future-proofed: the presence of the word “Legacy” in the name is to remind me that it’s not the end-all be-all NSURLSession subclass. It’s not the ideal, convenient networking object that should be used across my source base. Instead, it’s the nasty, pragmatic, full-of-history class interface of RSHTTPRequest that happens to be implemented on top of NSURLSession.

This gives me the freedom to willy-nilly switch client code from RSHTTPRequest to RSLegacyHTTPRequest, just to see what happens. A great place to start was in the RSHTTPRequest unit tests class I mentioned. It currently verifies the behavior of RSHTTPRequest for most all niggling network details I’ve encountered over seven years. I switched it from testing RSHTTPRequest to testing RSLegacyHTTPRequest by simply adding this to the top of the test file:

#define RSHTTPRequest RSLegacyHTTPRequest

Boom! Everything fails. That’s a nice start, and makes for an easy challenge to chip away at. Pick a failing unit test, and make it work. In my case this involved discovering how to simulate or approximate the interface of the old RSHTTPRequest, but on top of NSURLSession. Slowly but surely, I came to a point where I had a new RSLegacyHTTPRequest class, completely based on NSURLConnection, that passes all my existing tests.

I was far from done. I have other classes that use RSHTTPRequest, and themselves have unit tests of their own. I pulled a similar trick to uncover other unit testing edge cases that should have been in RSHTTPRequest, but weren’t. I was beefing up my test class, in some cases even finding residual bugs from my old implementation.

I got to a point today where I realized I had a more-or-less “fully” functional RSLegacyHTTPRequest class, but I am still not ready to abandon RSHTTPRequest. I have other clients to meander through, verifying that they behave as expected when switched over to the new class. In the mean time, I was stuck wondering whether the unit tests, those golden unit tests, should be left testing the old RSHTTPRequest or testing the new RSLegacyHTTPRequest? Answer: they’re both in use, so both should be tested.

Multi-Class Unit Tests

Finally we get to the namesake of this article’s title: how do I use the same precious collection of unit testing code but apply it to two (or more!) classes that happen to share the same interface? The answer is to subclass. When you implement and run unit tests in an Xcode project, the testing system looks at runtime for any classes in the test bundle that “have methods that start with -test”. What this means is that, if you wanted to, you could redundantly run all the unit tests in one of your test cases twice simply by subclassing it and leaving the subclass empty. If “MyTests2” is a subclass of “MyTests”, then at runtime, it’s going to find and execute all the tests in each of the classes, which will happen to be exactly the same tests.

For my situation, I want to run all the tests twice, but I want to run them on instances of different class. I decided to accomplish this by making some modest edits to the test class, replacing every alloc/init pair for RSHTTPRequest:

[[RSHTTPRequest alloc] init...]

With a bottleneck method that instantiates the class from an overridable Class object:

- (Class) classForHTTPRequestInstances
{
	return [RSHTTPRequest class];
}

- (RSHTTPRequest*) requestForTestingWithURL:(NSURL*)theURL
{
	return [[[self classForHTTPRequestInstances] alloc] init...];
}

I then added a new unit test class called “RSLegacyHTTPRequestTests”, which merely implements -classForHTTPRequestInstances to return RSHLegacyHTTPRequest. Now when I build and run unit tests, every single, painstakingly collected unit test gets run twice, once for each of the super-important URL request wrapper classes in my framework.

Over time, hopefully over a short period of time, I’ll move away from RSHTTPRequest to RSLegacyHTTPRequest. And then, hopefully over a similarly short period of time, I’ll start moving to RSSpiffyRequest. All the while, however, I’ll rest easy at night, knowing that to a very great extent, all the functionality I’ve come to expect over years of developing this code is being constantly confirmed by this glorious set of unit tests.

Open URL From Today Extension

A friend of mine mentioned in passing that he was having trouble getting an obvious, well-documented behavior of his Today extension to work … as documented. According to Apple, a Today extension should use NSExtensionContext when it wants to open its host app, e.g. to reveal a related data item from the Today widget, in the context of the host application.

A widget doesn’t directly tell its containing app to open; instead, it uses the openURL:completionHandler: method of NSExtensionContext to tell the system to open its containing app.

They even cite one of their own apps as an example:

In some cases, it can make sense for a Today widget to request its containing app to open. For example, the Calendar widget in OS X opens Calendar when users click an event.

The idea is you should be able to use a simple line of code like this from within your Today extension. E.g., when a user clicks on a button or other element in the widget, you call:

[[self extensionContext] openURL:[NSURL URLWithString:@"marsedit://"] completionHandler:nil];

Unfortunately this doesn’t work for me, for my friend, or I’m guessing, most, if not all people who try to use it. Maybe it’s only broken on Mac OS X? I was curious, so I stepped into the NSExtensionContext openURL:completionHandler: method, and observed that it essentially tries to pass the request directly to the “extension host proxy”:

0x7fff8bd83b03:  movq   -0x15df0b7a(%rip), %rax   ; NSExtensionContext.__extensionHostProxy

But in my tests, this is always nil. At least, it’s always nil for a Today widget configured out of the box the way Xcode says it should be configured by default. So, when you call -[NSExtensionContext openURL:completionHandler:] from a Today widget on OS X, chances are it will pass the message along to … nil. The symptom here is the URL doesn’t open, your completion handler doesn’t get called. You simply get nothing.

Getting back to the fact that Apple used Calendar as their example in the documentation, I thought I’d use my debugging skills to poke around at whether they are in fact calling the same method they recommend 3rd party developers use. If you caught my Xcode Consolation post a while back, it will come as no surprise that an lldb regex breakpoint works wonders here to how the heck Apple’s extension is actually opening URLs. First, you have to catch the app extension while it’s running. It turns out Today widgets are killed pretty aggressively, so if you haven’t used it very recently, it’s liable to be gone. Click on the Today widget to see e.g. Apple’s Calendar widget, then quickly from the Terminal:

ps -ax | grep .appex

To see all running app extensions. Look for the one of interest, ah there it is:

56052 ??         0:00.29 /Applications/Calendar.app/Contents/PlugIns/com.apple.iCal.CalendarNC.appex/Contents/MacOS/com.apple.iCal.CalendarNC

That’s the process ID, 56052 in this case, at the beginning of the line. Quickly click the Notification Center again to keep the process alive, and then from the Terminal:

lldb -p 56052

If all goes well you’ll attach to Apple’s Calendar app extension, where you can set a regex breakpoint on openURL calls, then resume:

(lldb) break set -r openURL
(lldb) c

Now quickly go back to the Notification Center, and click a calendar item for today. If you don’t have a calendar item for today, whoops, go to Calendar, add one, and start this whole dance over ;) Once you’ve clicked on a calendar item in Notification Center and are attached with lldb, you’ll see the tell-tale evidence:

(lldb) bt
* thread #1: tid = 0xd1a4d, 0x00007fff87f22f1f AppKit`-[NSWorkspace openURL:], queue = 'com.apple.main-thread', stop reason = breakpoint 1.8
  * frame #0: 0x00007fff87f22f1f AppKit`-[NSWorkspace openURL:]
    frame #1: 0x00007fff9213f763 CalendarUI`-[CalUIDayViewGadgetOccurrence mouseDown:] + 221
...

So Apple’s Calendar widget, at least, is not using -[NSExtension openURL:completionHandler:]. It’s using plain-old, dumb -[NSWorkspace openURL:]. And when I change my sample Today extension to use NSWorkspace instead of NSExtensionContext, everything “just works.” I suspect it will for my friend, too.

I’m guessing this is a situation where the functionality of Today extensions might be more fleshed out on iOS than on Mac, and the documentation just hasn’t caught up with reality yet. There are a lot of platform-specific caveats in the documentation, and perhaps one of them should be that, for the time being anyway, you should use NSWorkspace to open URLs from Mac-based Today extensions.

Product Packaging Oversign

For a long time I have used a custom script phase to deliberately code sign all the bundles, helper tools, frameworks, etc., that are bundled into a final shipping product. The idea behind this approach was to overcome limitations in Xcode’s built-in code signing flags, which e.g. made it difficult to be sure that subsidiary projects would be built with the same code signing identity.

Recently I started looking at the possibility of switching to Apple’s relatively new “Code Sign On Copy” option for Copy Files build phases that involve code. For example if you’re copying files to a Frameworks, Plugins, or similarly obvious target for code resources, a friendly checkbox appears to offer code signing “as it’s copied in.”

Screenshot showing code sign on copy for copy files phase.

Xcode’s default code signing behavior gets some things right: for example, it takes care to preserve the metadata and entitlements of the original code signing, if any. This means that subsidiary product that e.g. are aware of specific sandboxing rules that should be applied to them can sign themselves as part of their build process, and the “Code Sign On Copy” action later will only update the identity associated with the code signing.

But I noticed a problem which relates to my recent obsession with script phase performance. The problem is that Xcode’s default code signing occurs too often. In fact in my projects, every single time I build, it re-signs every code object that had been copied, even though it hasn’t changed. This isn’t a big deal for one or two small frameworks, but for an app with dozens or hundreds of code objects, it becomes a noticeable time lag every time you rebuild to test a small fix.

The specific issue I discovered boils down to:

  1. Having entitlements for your target. E.g. being sandboxed.
  2. Modifying the Info.plist file in a build phase. E.g. to update the build number for the bundle.

If your target meets these criteria, then by my estimation Xcode will resign all the “Code Sign On Copy” files every time you build, regardless of whether they’ve changed. I reported this as Radar #19264472. Until Apple fixes it, the only workarounds I know are to suck it up and wait out the code signing every build, stop modifying your Info.plist, or go back to a manual code signing script that can take finer care about how and when to sign subsidiary code.

Explicit Requirement Satisfied

If you do any fine-tuned customization to your app’s code signing “designated requirement,” you may come across situations where the code appears to be signed correctly, but codesign verification nonetheless yields a cryptic, terse failure message:

./Your.app: valid on disk
./Your.app: does not satisfy its designated Requirement

This problem is pretty insidious, because the failure of an app to meet its designated requirement does not actually prevent you distributing it and having users run it. The code is still signed by you, it just doesn’t identify itself to the code signing system in such a way that it will be considered trusted by the system as being “itself.” This is bad.

How bad? The most likely to affect your users if the app uses the system keychain at all to store secure data. Even data placed in the keychain by the app itself will be denied to the app unless the user approves of the access. Worse, even if the user approves the access with “Always Allow,” the system will continue to prompt the user each and every time it tries to access the data.

The reason for the failure is that the “designated requirement” serves as a test of identity for your app. If your app doesn’t meet that test, the system assumes you no longer have any business accessing the data that you previously placed in the keychain. So an app that starts out not even meeting its own designated requirement is invalid from the start. We need our apps to meet their own designated requirements.

For most apps this is a no-brainer: just let the code signing system provide a default designated requirement. Typically, the default asserts that the bundle identifier and certificate signing chain used when signing the app are later the same. In short: unless an app is signed with the same certificate and has the same bundle ID as it had when it stored the data, it will not be allowed to access the data now.

Why customize the designated requirement? The reasons are probably too varied for me to imagine, but one common scenario that happens to affect me is one in which two different bundle IDs may effectively refer to the same “app.” For example instances of MarsEdit may possess either the “com.red-sweater.marsedit” or “com.red-sweater.marsedit.macappstore” identifiers, depending upon whether they were built for the Mac App Store or for direct sale. Another scenario where a custom designated requirement would be appropriate is if an application changed developers and either of the old developer’s and new developer’s certificate is meant to be considered legitimate. If you’re curious, poke around at the designated requirements of some of the apps on your Mac:

codesign -d -r- /Applications/Google\ Chrome.app
designated => (identifier "com.google.Chrome" or identifier "com.google.Chrome.canary") and certificate leaf = H"85cee8254216185620ddc8851c7a9fc4dfe120ef"

In this case it appears that Google wants to confirm that a very specific certificate was used to sign Chrome, but wants the pre-release “Canary” builds to be treated as authentic copies of the app, even though they have a different bundle identifier.

Customizing the designated requirement can lead to a pretty lengthy specification string that can be hard to process mentally. When such a string produces an app that doesn’t meet its own requirement, it can be hard to guess at which specific clause is failing. The codesign tool’s error message is of no help, but you can take advantage of a useful option related to the tool’s verification functionality. Pass “-R” along with a specific requirement string, and it will be evaluated separately from the designated requirement. The long and short of this is you can feed the codesign tool pieces of the larger requirement string, and see which ones pass and fail. To provide a string right on the command line, start it with an “=”:

codesign -vv -R '=identifier "com.apple.mail"' /Applications/iTunes.app 
/Applications/iTunes.app: valid on disk
/Applications/iTunes.app: satisfies its Designated Requirement
test-requirement: code failed to satisfy specified code requirement(s)

In this contrived case, we ask codesign to confirm that iTunes has Mail’s bundle identifier, and of course it fails. When we instead provide a requirement string that makes sense…

codesign -vv -R '=identifier "com.apple.iTunes"' /Applications/iTunes.app
/Applications/iTunes.app: valid on disk
/Applications/iTunes.app: satisfies its Designated Requirement
/Applications/iTunes.app: explicit requirement satisfied

…the codesign tool confirms that it passes.

In the past I have been at a loss for how to more easily debug designated requirements issues. I only discovered the “-R” option today, but I’m sure it will be a great help in the months and years to come.

Speeding Up Custom Script Phases

Some Xcode projects use a handy feature for extending the build process called a Run Script build phase. These build phases can be added to the linear list of steps that Xcode steps through when building a target, such that custom tasks such as preparing dynamically generated source code, verifying build results, etc., can call be done as part of Xcode’s standard build routine.

A problem you might run into is that a long-running script phase can be a real drag to wait through every single time you build. You can work around this problem in a few ways, depending on what makes sense for your project. Two of the simplest options are:

  1. Check the box to run the script only “when installing.”
  2. This is particularly handy if the stuff that’s happening in the build phase really doesn’t need to be there until the final release build, or if you are willing to manually perform the steps during development.

  3. Add logic to your build phase script to detect the build configuration, and either perform a more expedient version of the task, or skip it altogether. For example, a build phase that does laborious profiling of your finished product may not need to be done on “Debug” builds, so you could add a clause to the script:
    if [ ${CONFIGURATION} == Profiling ] ; then
    	echo "Running a very long profiling task!"
    	...
    	echo "Finished running a very long profiling task!"
    else
    	echo "Skipping long profiling task! Whoo!"
    fi
    

    (Note: you don’t have to use bash for your shell script phases. In fact, you can run whatever interpreter you like. I typically use Python, but used bash here as a canonical example).

These tricks work out fine when a script phase is clearly only needed under special circumstances, but what about script phases that have to be done every time you build, rely upon files that may change over time, and take a considerable amount of time to finish? For this we can take advantage of another nuanced feature of Xcode script phases, which is the ability to specify arbitrary input and output files for the script. I think it’s time for an illustrative screenshot:

Screenshot of a configured Xcode script phase

Here’s the low down on the impact of specifying input and output files with script phases in Xcode:

  1. Lack of modification to any of the listed input files encourages Xcode not to run the script phase. Hooray! Fastness!
  2. Non-existence of any listed output file compels Xcode to run your script phase.
  3. The number of input and output file paths is passed to the script as ${SCRIPT_INPUT_FILE_COUNT} and ${SCRIPT_OUTPUT_FILE_COUNT} environment variables.
  4. Each input and output path is passed as e.g. ${SCRIPT_INPUT_FILE_0}, ${SCRIPT_OUTPUT_FILE_1}, etc.

In practice, what does this mean when you go looking to speed up your script phase? It means you should:

  1. List as an input every file or folder that may affect the results of your script phase.
  2. List at least one output, even if your script doesn’t leave any reliable artifacts.

One frustrating bug I should point out here is that Xcode (as of at least Xcode 6.0 and including 6.2 betas) is not as attentive as it should be about changes to the the input and output file lists. If you make changes to these lists, rebuild several times, and don’t see the efficiencies you expect being applied, you should close and reopen your Xcode project document. It seems to cache its notion about script phase dependencies, and will stubbornly stick to those rules until forced to re-evaluate them from scratch. I reported this to Apple as Radar #19233769.

Referring back to the screenshot above, you can that in this contrived example I have listed two input “files,” but in this case they are actually directories. This is to illustrate that if you list a directory, Xcode will trigger a re-running of your script phase whenever any shallow change occurs in that directory. For example, if I add, delete, or modify any files in ImportantStuff”, the script will run on the next build. However, if I modify a file within “ImportantStuff/Goodies”, it will not trigger the script to run because Xcode does not monitor for changes recursively.

You will also see that I’ve gone to the trouble of artificially adding a bogus file to the derived files folder, indicating the script has run. That has the effect of causing a “clean” of the project to wipe out the artificial file and thus cause the script phase to run again even though none of the input files may have changed. If I wanted to ensure that the script phase is skipped as aggressively as possible, I could provide e.g. a path to an output file that is guaranteed to exist, such as a stable file in my project like “$(SRCROOT)main.m”. Because the designation “Output File” in this case is only a hint to the Xcode build system, you don’t have to worry (and can’t expect) that the file will be created or altered unless you do so yourself in the script. This feels a little dodgy to me though, because Apple could choose to change the behavior in the future to e.g. imply that “clean” should delete all listed output files for a script phase.

Script build phases are a woefully under-documented, incredibly useful component of the Xcode build system. They are especially useful when they run blazingly fast or are skipped completely if not needed. I hope this information gives you the resources you need to take full advantage of them.

Xcode Consolation

One of the best things any Mac or iOS developer can do to improve their craft is to simply watch another developer at work in Xcode. Regardless of the number of years or the diversity of projects that make up your experience with the tool, you will undoubtedly notice a neat trick here or there that changes everything about the way you work.

If you were sitting in my office on a typical workday, looking over my shoulder, that would be a little creepy. But one thing you’d notice that differentiates me from many others is the amount of time I spend typing into the Xcode debugger console.

In my experience, other developers fall into three groups when I mention that I use the console almost exclusively when interacting with the debugger:

  1. Those who share this approach. We exchange high-fives and move on.
  2. Those who appreciate the console for occasional tricks, but rely mostly on the variables view.
  3. Those who have never heard of or noticed the console.

Let’s assume for the sake of argument that you fall into group 3. You can show the console while debugging any process by selecting View -> Debug Area -> Activate Console from the menu bar. In fact, I do this so often that that the keyboard shortcut, Cmd-Shift-C, is completely second-nature to me.

Xcode window with console highlighted.

In fact I find the console so useful that it’s not unusual for me to hide much of the other junk, so I can have a mainline connection to the debugger.

Xcode window with large console area

So let’s go back again to the uncomfortable assumption that you’re sitting in my office, looking over my shoulder. What would you see me do in the console? All manner of things: For one thing I rarely click those visual buttons for stepping through code. Instead, I use these terse keyboard aliases, inherited from the bad old Gdb days. In lldb, these all come as standard abbreviations of more verbosely named commands:

  • n – step over the next line of source
  • s – step into the first line of source of a function
  • ni – step over the next instruction of assembly code
  • si – step into the first instruction of a function
  • c – continue
  • fin – continue until return from current stack frame

Those are the basics, but another trick, I believe it was called ret in Gdb, comes in handy often:

  • thread return – return immediately from the current stack frame

You could use this if you are stuck in some function that is crashed, for example, but you know that returning to the caller would allow the process to continue running as normal. Or, you could use it to completely circumvent a path of code by breaking on a function and bolting right out, optionally overriding the return value. Just to pick an absurd example with flair, let’s stub out AppKit’s +[NSColor controlTextColor]:

(lldb) b +[NSColor controlTextColor]
Breakpoint 1: where = AppKit`+[NSColor controlTextColor], address = 0x00007fff8fb05572
(lldb) break command add
Enter your debugger command(s).  Type 'DONE' to end.
> thread ret [NSColor redColor]
> c
> DONE
(lldb) c

Here we have opted to break on every single call to controlTextColor, returning to the caller with a fraudulent color that is apparently not consulted by the label for this popup menu in MarsEdit:

MarsEdit screenshot with labels drawn in red

In fact, mucking about with system symbols is one of the great tricks of the console, and lldb’s built-in “breakpoint” command brings with it superpowers that can’t be touched by Xcode’s dumbed down GUI-based controls. For example, what if we wanted to set a breakpoint that would catch not only +controlTextColor, but any similar variation? Using lldb’s support for regular expression breakpoints, it’s a snap:

(lldb) break set -r control.*Color -s AppKit
Breakpoint 1: 20 locations.

Here we request that a breakpoint be set for any symbol in the AppKit framework that contains the lower-cased “control,” followed by anything, then capitalized “Color.” And lldb just set 20 breakpoints at once. To see them all, just type “breakpoint list” and you’ll see all the variations listed out as sub-breakpoints:

(lldb) break list
Current breakpoints:
1: regex = 'control.*Color', locations = 20, resolved = 20, hit count = 0
  1.1: where = AppKit`+[NSColor controlTextColor], address = 0x00007fff8fb05572, resolved, hit count = 0 
  1.2: where = AppKit`+[NSDynamicSystemColor controlTextColor], address = 0x00007fff8fb05670, resolved, hit count = 0 
  1.3: where = AppKit`+[NSColor controlBackgroundColor], address = 0x00007fff8fb1465d, resolved, hit count = 0 
  1.4: where = AppKit`+[NSDynamicSystemColor controlBackgroundColor], address = 0x00007fff8fb1475d, resolved, hit count = 0 
  (etc...)

One major shortcoming of all this goodness is Xcode has a mind of its own when it comes to which breakpoints are set on a given target. Anything you add from the lldb prompt will not register as a breakpoint in Xcode’s list, so you’ll have to continue to manipulate it through the console. You can enable or disable breakpoints precisely by specifying both the breakpoint number and its, umm, sub-number? For example to disable the breakpoint on +[NSColor controlBackgroundColor] above, just type “break disable 1.3”.

Regular expressions can be very handy for setting breakpoint precisely on a subset of related methods, but they can also be very useful for casting about widely in the vain pursuit of a clue. For example, when I’m boggled by some behavior in my app, and suspect it has to do with some system-provided API, or even an internal framework method, I’ll just throw some verbs that seem related at a breakpoint, and see what I land on. For example, it seems like some delegate, somewhere should be imposing this behavior:

(lldb) break set -r should.*:
Breakpoint 5: 735 locations.

That’s right, set a breakpoint for any ObjC method that includes the conventional “shouldBlahBlahBlah:” form in its selector name. Or if you are really at your wit’s end about an event related issue, why not capture the whole lot and see where you stand?

(lldb) break set -r [eE]vent
Breakpoint 10: 9520 locations.

Sometimes I’ll set a breakpoint like this and immediately continue, to see what I land on, but often I’ll use lldb’s breakpoint system as a quick way of searching the universe of symbol names. After setting a breakpoint like the one above, I’ll do a “break list” and then search through the results for other substrings I’m interested in. This often gives me a clue about the existence of methods or functions that are pertinent to the problem at hand.

I’ve scratched the surface here of all the powerful things you can use Xcode’s debugger console for, but I hope it has brought you some increased knowledge about the tools at your disposal. If you’ve never used the console before, or only use it occasionally, perhaps I’ve pushed you a bit farther down the path of having its Cmd-Shift-C shortcut feel like second-nature to you as well.

Reinventing AEPrintDesc

For the diminishing number of us who are still occasionally inspired or required to debug code involving AppleEvents, a lot of the head-scratching revolves around the question “what the heck is this AEDesc”?

The question is especially likely to come up when poking around in the debugger at some code you probably didn’t write, don’t have the source code for, and was not compiled with symbols of any kind. For example, you’re wondering why the heck an AppleScript behaves one way when run by your app, but another way when run in the Script Editor, or in an iWork app.

In the old days, a convenient system function could solve this problem for us: AEPrintDesc. You passed it an AEDesc, it printed out junk about it. Perfect for debugging in a command-line debugger. For example, if a pointer to an AEDesc was in register $rdi:

(lldb) expr (void) AEPrintDesc($rdi)

Unfortunately this disappeared at some point, leaving only the much less interactive AEPrintDescHandle. Not to fear, you can still make use of this from the debugger, you just have to take advantage of lldb’s ability to spontaneously generate runtime variables:

(lldb) expr void *$h = (void*)malloc(sizeof(void*))
(lldb) expr (void) AEPrintDescToHandle($rdi, &$h)
(lldb) expr *(char**)$h

But when one is head-down, debugging a serious AppleEvent issue, it’s not uncommon to need to print AEDescs left, right, up, down, and diagonally. This needs to be fast-and-furious, not daunting, slow, and error-prone. I decided to use this problem to dig into lldb’s user commands functionality. I thought at first that “command alias” would do the trick, because it shows examples of defining an alias that takes arguments from the command line and passes them along:

(lldb) command alias pdesc expr void* $h = (void*)malloc(8); (void) AEPrintDescToHandle(%1, &$h); *(char**)$h/
(lldb) pdesc $rdi
error: expected expression
error: invalid operands to binary expression ('char *' and 'unsigned long')
error: 2 errors parsing expression

The trick, as I finally learned from the lldb blog, is you have to use a special “regex” form of command if you want to properly expand arbitrary input and run whatever debugger expressions on it:

(lldb) command regex pdesc 's/(.+)/expr void* $h = (void*)malloc(8); (void) AEPrintDescToHandle(%1, &$h); *(char**)$h/'

Now when I’m stuck in the mines hammering on AEDescs, I just type “pdesc [whatever]”, and if it’s an AEDesc, I get an instantly readable result:

(lldb) pdesc $rdi
(char *) $10 = 0x00007fc3c360c0d0 "'Jons'\\'pClp'{ '----':\"file:///\", &'subj':null(), &'csig':65536 }"
(lldb) pdesc $rsi
(char *) $11 = 0x00007fc3c3626940 "'aevt'\\'ansr'{  }"

To enjoy the benefits of this command in whatever process you’re debugging, whether it’s yours, the system’s, or a 3rd-party app’s code, just add the line as-is to your ~/.lldbinit file:

command regex pdesc 's/(.+)/expr void* $h = (void*)malloc(8); (void) AEPrintDescToHandle(%1, &$h); *(char**)$h/'

Enjoy!

Update: Chris Parrish on Twitter informs me that the debugger function is still present, but it’s named differently than I remember. It’s GDBPrintAEDesc. Oh well, at least this was a good learning experience!

Update 2: Poking around a bit more in the debugger, I noticed a helpful looking function:

(lldb) expr (void) GDBPrintHelpDebuggingAppleEvents()

Run that from lldb and see a round-up of information about the GDBPrintAEDesc call and other debugging tricks provided by the AppleEvent engineers.

View Bridge Logging

One of the bits of magic associated with app extensions is that when for example a Share extension’s UI is presented in the context of host application, it behaves as though it were hooked into the UI of the app itself. Standard menu item command such as Cut, Copy, Paste, etc., are all mapped through to the extension’s UI so that standard editing commands work as expected.

But the app extension itself is actually hosted in a separate process. How does all this magic work? On the Mac at least, when the extension’s user interface is displayed, a private framework from the system called ViewBridge.framework seems to be in charge of displaying the view and coordinating communication between it and the host app.

I was trying to figure out why some specific keystrokes did not seem to be making it to my app extension, and while poking around in the debugger I noticed that the ViewBridge framework is riddled with logging messages that are, by default, largely disabled. With a little detective work I was able to figure out how to turn them on.

The long and short of it is that, Apple’s ViewBridge framework looks for an undocumented NSUserDefaults key, “ViewBridgeLogging”. The key can be used to activate, by name, any of a slew of different logging “domains,” which compel the framework to dump copious information about topics ranging from accessibility, to events, to window animations.

Two of these domains, “communications_failure” and “exceptions” are always on, so you will see console logging from these categories should the need arise. The easiest way to coax ViewBridge to dump a massive amount of information for all the other domains is to simply set the NSUserDefaults key globally from the command line:

defaults write -g ViewBridgeLogging -bool YES

Now, when you invoke and interact with your own app extension UI, you’ll see a bunch of logging messages like this:

12/2/14 11:00:30.798 AM MarsEdit Shuttle[83129]:
	<NSViewServiceMarshal: 0x7fc43af09070>
	sending key event to <NSWindow: 0x6000001ecc00>:
	NSEvent: type=FlagsChanged loc=(135,-19) time=226109.1
	flags=0x100 win=0x0 winNum=13244 ctxt=0x0 keyCode=55

This could be handy if you’re trying to work out the particulars of why or if a particular event is even reaching your extension. In fact the vast number of logging messages have often been carefully crafted to provide specific information that could be useful if you’re confused about an edge case. Here’s a more verbose one:

12/2/14 3:11:30.709 PM MarsEdit Shuttle[87440]: 
	<NSViewServiceMarshal: 0x7febfad00b30>
	choosing not to make <NSWindow: 0x6180001eea00> resign
	key because it already believes itself to lack keyness

Yet more examples of pithy prose you’ll find among the console log messages:

"activated TSM because service window became key while remote view is first responder"
"incremented TSM activation count to 1"
"told app it acquired key focus"

Even some particularly juicy language like “discarded toxic NSEvent.” Intriguing. Tell me more!

It’s worth mentioning that the ViewBridge seems to be responsible for managing more than just the UI for app extensions. For example if you leave this console logging enabled while you bring up a standard save panel from TextEdit, you’ll see a massive number of messages relating to the sandboxed file chooser’s behaviors.

It could all become pretty overwhelming, so if you want to limit the kinds of logs that make it to the system console, you can change the NSUserDefaults value from a blunt “YES” to a dictionary representation of the subset of domains you want to activate. As I said before, I believe the “exceptions” and “communications_failure” domains are always on, but to get a feel for the other domains you can selectively enable, run this from the command line:

strings - /System/Library/PrivateFrameworks/ViewBridge.framework/ViewBridge | grep kLogDomain | sort -u

These are the symbolic constant names for the strings, but the actual string values seem to be easily inferred. For example kLogDomain_Events becomes “events”. But to make things even more bullet-proof, just look closely at the messages that appear in the console in “firehose mode,” with all logging messages enabled as above. Each of the logs ends with a hashtag-style marker indicating the domain of the incident. For example, if the types of logging messages you’re interested in all end with #events or #miscellany, just change the global logging default to show only those varieties by adjusting the default like this:

default write -g ViewBridgeLogging -dict events 1 miscellany 1

Now you know a whole lot about how to learn a whole lot about what goes on when Apple’s ViewBridge framework is in charge of managing a view. Here’s hoping this makes the task of debugging particular behaviors of your app extension’s UI more palatable.